文章摘要
核电用氧化物弥散强化铁素体/马氏体钢制备技术研究进展
Advancements in the Development of Oxide Dispersion Strengthened Ferritic/Martensitic Steel for Nuclear Power Generation
Received:August 05, 2024  
DOI:10.3969/j.issn.1674-6457.2024.10.007
中文关键词: 氧化物弥散强化(ODS)钢  固态相变  粉末冶金法  增材制造技术  力学性能
英文关键词: oxide diffusion strengthened (ODS) steel  solid-state phase transition  powder metallurgy method  additive manufacturing technology  mechanical properties
基金项目:国家自然科学基金(52101157);山西省重点研发计划(202202050201016);山西省科技合作交流专项(202104041101022)
Author NameAffiliation
ZHOU Xiaosheng School of Mechanical Engineering, North University of China, Taiyuan 030051, China 
SUN Ruhao School of Mechanical Engineering, North University of China, Taiyuan 030051, China 
LI Guodong School of Mechanical Engineering, North University of China, Taiyuan 030051, China 
LI Hao School of Mechanical Engineering, North University of China, Taiyuan 030051, China 
ZHANG Huang School of Mechanical Engineering, North University of China, Taiyuan 030051, China 
Hits: 160
Download times: 48
中文摘要:
      氧化物弥散强化(Oxide Dispersion Strengthened, ODS)铁素体/马氏体钢因其优异的高温力学性能和抗辐照性能,被认为是核电关键部件首选结构材料。ODS铁素体/马氏体钢中添加的氧化物主要为Y2O3。由于Y在Fe中的固溶度非常低,且Y2O3的熔点非常高,目前主要通过粉末冶金法将Y2O3引入铁基体中。ODS钢基体的合金成分不同,其基体组织不同,将决定着在粉末冶金法的热成形过程中是否发生固态相变。因此,首先详细讨论了ODS马氏体钢和ODS铁素体钢的合金成分、微观组织特征和相变行为。探讨了热成形工艺(热挤/锻压、热等静压和放电等离子烧结技术)对ODS钢微观组织和力学性能的影响。其中,突出了氧化物纳米颗粒与晶界和相界的相互作用,指出氧化物纳米颗粒与界面的相互作用将影响氧化物的均匀分布。针对粉末冶金法在大规模生产、制造成本等方面的局限性,介绍了国内外学者采用感应熔炼法制备ODS钢所进行的尝试及进展。最后综述了目前采用增材制造技术制备高性能ODS钢的进展,涉及增材制造粉末的预处理技术和不同增材制造工艺对ODS钢微观组织和力学性能的影响。增材制造技术制备ODS钢中的氧化物颗粒尺寸及数密度已达可接受水平,在高效、低成本制备高性能ODS钢方面具有巨大潜力。
英文摘要:
      Oxide dispersion strengthened (ODS) ferritic/martensitic steel is regarded as the preferred structural materials for key components of nuclear power due to their outstanding high-temperature mechanical properties and radiation resistance. The oxide primarily added in ODS ferritic/martensitic steel is Y2O3. Given that the solid solubility of Y in Fe is extremely low and the melting point of Y2O3 is exceptionally high, Y2O3 is currently mainly incorporated into the iron matrix through powder metallurgy. Different alloy compositions of the ODS steel matrix lead to diverse matrix microstructures, which determine whether solid-state phase transformation occurs during the hot forming process of powder metallurgy. Therefore, the alloy composition, microstructure characteristics, and phase transformation behavior of ODS martensitic steel and ODS ferritic steel were initially elaborated in detail. The impact of hot forming processes (hot extrusion/forging, hot isostatic pressing, and spark plasma sintering technology) on the microstructure and mechanical properties of ODS steel was explored. Among them, the interaction between oxide nanoparticles and grain boundaries as well as phase boundaries was emphasized, and it was pointed out that the interaction between oxide nanoparticles and interfaces affected the uniform distribution of oxides. In light of the limitations of powder metallurgy in large-scale production and manufacturing costs, the attempts and advancements made by scholars both in China and internationally in preparing ODS steel through induction melting were introduced. Finally, the current progress in fabricating high-performance ODS steel by additive manufacturing technology was summarized, encompassing the pretreatment technology of additive manufacturing powders and the effect of different additive manufacturing processes on the microstructure and mechanical properties of ODS steel. The oxide particle size and number density in ODS steel fabricated by additive manufacturing technology have reached an acceptable level and hold significant potential in the efficient and low-cost preparation of high-performance ODS steel.
View Full Text   View/Add Comment  Download reader
Close

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

You are the511119visitor    渝ICP备15012534号-6

>Copyright:Journal of Netshape Forming Engineering 2014 All Rights Reserved

>Postal Code: Phone:Fax: Email:

>    

渝公网安备 50010702501719号