文章摘要
铝过渡层对钛/铝爆炸焊接影响的数值模拟
Numerical Simulation of Effect of Aluminum Transition Layer on Titanium/Aluminum Explosive Welding
Received:November 28, 2023  
DOI:10.3969/j.issn.1674-6457.2024.08.010
中文关键词: 爆炸焊接  数值模拟  过渡层  钛/铝复合板  碰撞角
英文关键词: explosive welding  numerical simulation  transition layer  titanium/aluminum flying plate  collision angle
基金项目:国家自然科学基金(11902003);安徽省重点研究与开发计划(2022a05020021)
Author NameAffiliation
MIAO Guanghong School of Mechanics and Optoelectronics Physics,, Anhui Huainan 232001, China 
CHEN Long School of Civil Engineering and Architecture, Anhui University of Science and Technology, Anhui Huainan 232001, China 
ZHOU Dapeng CCTEG Huaibei Blasting Technology Research Institute Co., Ltd., Anhui Huaibei 235000, China 
LIU Ziwei School of Civil Engineering and Architecture, Anhui University of Science and Technology, Anhui Huainan 232001, China 
ZHU Zhiqiang School of Civil Engineering and Architecture, Anhui University of Science and Technology, Anhui Huainan 232001, China 
ZHANG Xu School of Civil Engineering and Architecture, Anhui University of Science and Technology, Anhui Huainan 232001, China 
CHU Xiangyu School of Civil Engineering and Architecture, Anhui University of Science and Technology, Anhui Huainan 232001, China 
Hits: 767
Download times: 324
中文摘要:
      目的 研究中间过渡层对爆炸焊接质量的影响。方法 利用ANSYS LS-DYNA有限元软件结合SPH方法分别对TA2/5083Al和TA2/1060Al/5083Al爆炸焊接过程进行数值模拟研究,对复板的碰撞速度、竖向位移、碰撞压力、碰撞角进行了研究。结果 在有过渡层复合板上,特征单元A、B、C的碰撞速度分别为431、440、451 m/s,在无过渡层复合板上,特征单元A、B、C的碰撞速度分别为541、552、563 m/s;在相同特征单元下,有过渡层的最大碰撞压力为5.1 GPa,无过渡层的碰撞压力为6.8 GPa。添加过渡层后,碰撞速度、碰撞压力更小。碰撞点处特征单元数值模拟出的碰撞角分别为11.10°、14.40°,对应的理论计算碰撞角分别为11.30°、14.21°,误差幅度在1.32%~1.80%。结论 在基复板之间添加过渡层铝,可以使复板产生多次碰撞进而划分总动能,从而达到减小动能的目的;可有效减小基复板的碰撞速度和碰撞压力,使基复板结合得更加牢固和平稳,使爆炸焊接质量更好,且碰撞角的数值模拟结果与理论计算结果基本吻合,证明理论计算公式具有一定的准确性。
英文摘要:
      The work aims to study the effect of intermediate transition layer on the quality of explosive welding. The explosive welding processes of TA2/5083Al and TA2/1060Al/5083Al were numerically simulated by ANSYS LS-DYNA finite element software combined with the SPH (Smoothed Particle Hydrodynamics) method. The collision velocity, vertical displacement, collision pressure and collision angle of the flying plate during the bonding process were studied. The collision velocities of the characteristic elements (A, B and C) on the flying plate with a transition layer were 431, 440 and 451 m/s, respectively. The collision velocities of the three same characteristic elements on the flying plate without a transition layer were 541, 552 and 563 m/s, respectively. Under the same characteristic element, the maximum collision pressure with a transition layer was 5.1 GPa, and the collision pressure without a transition layer was 6.8 GPa. The collision speed and collision pressure after adding the transition layer were smaller. The numerical simulation collision angles of characteristic elements at collision point are 11.10 and 14.40 respectively, and the theoretical calculation collision angles are 11.30 and 14.21 respectively, and the error range is 1.32%-1.80%. The addition of a aluminum transition layer between the base plate and the flying plate makes the flying plate produce multiple collisions to divide the total kinetic energy, so as to achieve the purpose of reducing the kinetic energy in welding. It can effectively reduce the collision speed and collision pressure of the base plate and the flying plate, make the combination of the base plate and the flying plate more firm and stable, and make the quality of explosive welding better. In addition, the numerical simulation results of the collision angle are basically consistent with the theoretical calculation results, which proves that the theoretical calculation formula has certain accuracy.
View Full Text   View/Add Comment  Download reader
Close

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

You are the511459visitor    渝ICP备15012534号-6

>Copyright:Journal of Netshape Forming Engineering 2014 All Rights Reserved

>Postal Code: Phone:Fax: Email:

>    

渝公网安备 50010702501719号