文章摘要
纳米多晶Mg-Y合金压缩力学行为的分子动力学研究
Molecular Dynamics of the Compressive Mechanical Behavior of Nanopolycrystalline Mg-Y Alloy
Received:January 22, 2024  
DOI:10.3969/j.issn.1674-6457.2024.05.012
中文关键词: Mg-Y合金  分子动力学  压缩  温度  应变速率
英文关键词: Mg-Y alloy  molecular dynamics  compression  temperature  strain rate
基金项目:山西省自然科学基金(202203021221113);国家联合基金重点项目(U20A20230);中央引导地方项目(YDZJSX 2021C006);吉林省科技厅自然科学基金项目资助(20200201012JC)
Author NameAffiliation
WANG Weiguang School of Aeronautics and Astronautics,Taiyuan 030051, China 
WU Yaojin School of Aeronautics and Astronautics,Taiyuan 030051, China 
JIANG Hu School of Materials Science and Engineering, North University of China, Taiyuan 030051, China 
YU Jianmin School of Materials Science and Engineering, North University of China, Taiyuan 030051, China 
LI Linlin Jilin Engineering Normal University, Changchun 130052, China 
Hits: 703
Download times: 506
中文摘要:
      目的 研究纳米多晶Mg-Y合金在不同温度和应变速率下的力学响应以及不同变形条件下的晶粒变形行为。方法 通过ATOMSK软件构建了晶粒取向随机的纳米多晶Mg-Y二元合金模型,利用LAMMPS软件,在400~520 K温度及1×1010 s1、1×109 s1应变速率下完成了纳米多晶Mg-Y合金的压缩模拟,借助后处理OVITO软件对模拟结果进行了分析。结果 随着温度的升高,纳米多晶Mg-Y合金的力学性能降低,且在温度上升到一定程度后具有一定的梯度规律。在微观层面,温度的上升使总体位错密度下降,但减少了晶粒内部的长程位错和位错扭结,并且<c+a>类位错与<a>类位错的比例上升。纳米多晶Mg-Y合金在高应变速率下的屈服强度更高,在原子排布层面上,六方最密堆积的比例降低。结论 温度升高带来的更多能量使低能态的Y原子更容易参与到位错产生、消失过程中,还加剧了<c+a>类型位错向<a>类位错的转变。高应变速率通过大幅度转化基体Mg的六方最密堆积形式,增加了晶界的破碎和形核,影响了合金的力学性能。
英文摘要:
      The work aims to study the mechanical response of the nanopolycrystalline Mg-Y alloy at different temperature and strain rates and the grain deformation behavior under different deformation conditions. The nanopolycrystalline Mg-Y alloy model with random grain orientation was constructed by ATOMSK software, and the compression simulation of nanopolycrystalline Mg-Y alloy at the temperature of 400-520 K and strain rates of 1×1010 s−1 and 1×109 s−1 was completed by LAMMPS software. The simulation results were analyzed by post-processing software OVITO. With the increase of temperature, the mechanical properties of nanopolycrystalline Mg-Y alloy decreased and had a certain gradient law after the temperature rose to a certain extent. At the microscopic level, the rise in temperature caused a decrease in the overall dislocation density, but alleviated the generation of long-range dislocation and kinink within the grain, and the proportion of <c+a> to <a> dislocation increased. The nanopolycrystalline Mg-Y alloy had higher yield strength at high strain rates and decreased the ratio of the closest hexagonal packing at the atomic arrangement level. The more energy brought by the temperature increase makes it easier for Y atoms to participate in the process of misgeneration and disappearance, and also causes the transition of <c+a> to <a>. The high strain rate increases the fragmentation and nucleation of the grain boundary by substantially converting the hexagonal closest packing form of the matrix Mg, and affects the mechanical properties of the alloy.
View Full Text   View/Add Comment  Download reader
Close

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

You are the509288visitor    渝ICP备15012534号-6

>Copyright:Journal of Netshape Forming Engineering 2014 All Rights Reserved

>Postal Code: Phone:Fax: Email:

>    

渝公网安备 50010702501719号