|
Ti60合金热变形行为与应变补偿型本构模型 |
Deformation Behavior and Constitutive Model by Using Strain Compensation of Ti60 Alloy at Elevated Temperature |
Received:September 24, 2023 |
DOI:10.3969/j.issn.1674-6457.2024.02.011 |
中文关键词: Ti60合金 热压缩 本构方程 应变补偿 软化效应 高温变形 |
英文关键词: Ti60 alloy hot compression constitutive equation strain compensation softening effect high-temperature deformation |
基金项目: |
|
Hits: 877 |
Download times: 399 |
中文摘要: |
目的 确定Ti60合金在高温下的应变行为,促进材料性能的优化和工程应用的发展。方法 在变形温度为900、950、990、1 020、1 050 ℃,应变速率为0.001、0.01、0.1、1、5 s−1,最大变形量为60%条件下,利用Gleeble-3800热模拟实验机对Ti60试样进行不同应变速率的热压缩实验。结果 Ti60合金的高温流变应力-应变规律如下:当温度一定时,随着应变速率的升高,峰值应力上升,当温度和应变速率一定时,随着应变的升高,应力表现为先上升后下降的趋势,而在1 020 ℃、0.01 s−1条件下,表现反常,这可能与第二相的动态析出有关。不同真应变下的变形激活能Q=838.996 201 9 kJ/mol,相应的本构方程相关系数n=2.889 582,α=0.013 182 009,A=1.335 7×1033,建立了Ti60合金热变形Arrhenius本构关系模型 ,用于预测和优化Ti60合金在高温条件下的峰值应力。采用应变补偿方法计算了五次多项式的各个系数和其他应变对应的应力。通过比较由模型计算得到的流变应力结果和实际热模拟实验数据,发现实验结果与计算结果一致,不仅验证了应变补偿方法的合理性,而且为数值模拟等相关研究提供了数据支撑。结论 通过实验和模拟,对Ti60合金的高温变形行为有了更全面和更准确的认识。 |
英文摘要: |
The work aims to determine the strain behavior of Ti60 alloy at high temperature and promote the optimization of material performance for engineering applications. Thermal compression tests were conducted on Ti60 specimens at different strain rates using the Gleeble-3800 thermal simulation machine. The deformation temperatures in the relevant parameters were set at 900, 950, 990, 1 020, 1 050 ℃, with strain rates of 0.001, 0.01, 0.1, 1, 5 s−1, respectively. The study obtained the high-temperature flow stress-strain relationship for this alloy. When the temperature was constant, the peak stress gradually increased with the rise of strain rate. When temperature and strain rate were constant, the stress showed a trend of initially increasing and then decreasing with the increase of strain, except for the anomalous phenomenon at 1 020 ℃ and 0.01 s−1, which may be related to the dynamic precipitation of the second phase. The deformation activation energy Q was determined to be 838.996 201 9 kJ/mol, and the corresponding constitutive equation coefficients were found to be n=2.889 582, α=0.013 182 009, |
View Full Text
View/Add Comment Download reader |
Close |
|
|
|