文章摘要
7075铝合金冷搓成形本构关系及有限元分析应用研究
Constitutive Relationship and Finite Element Analysis of 7075 Aluminum Alloy Cold Rolling
Received:May 06, 2023  
DOI:10.3969/j.issn.1674-6457.2023.011.013
中文关键词: 7075铝合金  霍普金森杆实验(SHPB)  Johnson-Cook(J-C)本构模型  冷搓成形  有限元分析
英文关键词: 7075 aluminum alloy  split Hopkinson pressure bar test (SHPB)  Johnson-Cook (J-C) constitutive model  cold rolling  finite element analysis
基金项目:天津市紧固连接技术企业重点实验室开发课题(TKLF2021-01-B-02)
Author NameAffiliation
LIU Han-xu College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astro-nautics, Nanjing 210016, China 
LIU Fang-yuan Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China
Aerospace Precision Production Co., Ltd., Tianjin 300300, China 
WANG Ning Engineering Technology Training Center, Nanjing Vocational University of Industry Technology, Nanjing 210023, China 
LIANG Long Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China
Aerospace Precision Production Co., Ltd., Tianjin 300300, China 
ZHANG Jian Helicopter Research and Development Institute, Jiangxi Jingdezhen 333001, China 
TANG Wei Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China
Aerospace Precision Production Co., Ltd., Tianjin 300300, China 
QI Zeng-xing Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China
Aerospace Precision Production Co., Ltd., Tianjin 300300, China 
CHEN Ming-he College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astro-nautics, Nanjing 210016, China 
Hits: 1397
Download times: 719
中文摘要:
      目的 研究7075铝合金在高应变速率下的本构关系,并将其应用于有限元仿真分析中,以实现对7075铝合金环槽铆钉冷搓成形过程的精确预测。方法 利用霍普金森压杆(SHPB)实验获得7075铝合金在1 000~4 500 s1应变速率下的真实应力-应变曲线。结合静态压缩实验在0.001 s1应变速率下的结果构建了优化的Johnson-Cook(J-C)本构模型,并应用有限元仿真对7075铝合金环槽铆钉冷搓成形过程进行模拟预测。结果 当应变速率由0.001 s1上升至3 000 s1时,7075铝合金的屈服强度增长较少,但当应变速率由3 000 s1上升至4 500 s1时,屈服强度提高了45 MPa。利用优化的J-C本构模型对真实应力进行预测,其平均相对误差与相关系数分别为0.35%和0.999 2。有限元分析结果显示,在成形过程中,铆钉零件任意部位的最大应变速率基本低于4 500 s1。外形预测结果与实际测量值的最大绝对误差为0.08 mm,最大相对误差为3.45%。结论 当应变速率由3 000 s1上升至4 500 s1时,7075铝合金展现出了明显的应变率强化效应,优化的J-C本构模型能够准确预测7075铝合金在0.001 ~4 500 s1应变速率范围内的真实应力。将其应用于有限元分析能够准确预测7075铝合金环槽铆钉冷搓成形过程。
英文摘要:
      The work aims to investigate the constitutive relationship of 7075 aluminum alloy at high strain rates, and utilize the constitutive model in finite element simulation analysis to forecast the cold rolling process of 7075 aluminum alloy ring slot rivets. The true stress-true strain curve of 7075 aluminum alloy in the 1 000-4 500 s−1 strain rate range was obtained through Hopkinson pressure bar (SHPB) experiments. An optimized Johnson-Cook (J-C) constitutive model was constructed along with the results of static compression tests at a strain rate of 0.001 s−1. And it was applied in finite element model to predict the cold rolling process of 7075 aluminum alloy ring slot rivets. The yield strength showed little increase from strain rate of 0.001 s−1 to 3 000 s−1. But it increased by 45 MPa when the strain rate rose to 4 500 s−1 from 3 000 s−1. The optimized J-C constitutive model accurately predicted the true stress, with an average relative error of 0.35% and correlation coefficient of 0.999 2. The finite element analysis showed that the maximum strain rate during forming was below 4 500 s-1 for any locus of the rivet. The maximum absolute error and relative error between predicted and measured values were 0.08 mm and 3.45% respectively. In conclusion, the alloy exhibits a strain rate strengthening effect when the strain rate increases from 3 000 s−1 to 4 500 s−1. The optimized J-C constitutive model can accurately predict the true stress of 7075 aluminum alloy within the 0.001-4 500 s−1 strain rate range. And the cold rolling process of 7075 aluminum alloy slot rivets through finite element analysis can be precisely predicted with the optimized J-C model.
View Full Text   View/Add Comment  Download reader
Close

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

You are the504862visitor    渝ICP备15012534号-6

>Copyright:Journal of Netshape Forming Engineering 2014 All Rights Reserved

>Postal Code: Phone:Fax: Email:

>    

渝公网安备 50010702501719号