文章摘要
基于Moldflow和UG的活动盖板数值仿真分析及模具设计
Numerical Simulation Analysis and Mold Design of Movable Cover Plate Based on Moldflow and UG
Received:April 03, 2023  
DOI:10.3969/j.issn.1674-6457.2023.09.008
中文关键词: Moldflow  UG  仿真  验证  模具设计
英文关键词: Moldflow  UG  simulation  verification  mold design
基金项目:重庆市技术创新与应用发展重点专项项目(cstc2020iscx-lyggX0007);乐山市科技局重点研究项目(21GZD026)
Author NameAffiliation
TAN An-ping Engineering & Technical College, Chengdu University of Technology, Sichuan Leshan 614000, China 
DUAN Yang Engineering & Technical College, Chengdu University of Technology, Sichuan Leshan 614000, China 
TAO Xing-xing Engineering & Technical College, Chengdu University of Technology, Sichuan Leshan 614000, China 
LUO Jing Engineering & Technical College, Chengdu University of Technology, Sichuan Leshan 614000, China 
LI You-bing College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050, China 
Hits: 1537
Download times: 644
中文摘要:
      目的 为了提高开模成功率,提出一种数值仿真与模具设计相结合的方法,使模具关键参数的设计具有科学依据。方法 根据经验设计几种进浇方案,然后从模流分析仿真结果中选出一种较好的方案作为预选方案;对预选方案的重要参数进行验证,如缩水性、填充时间、填充等值线、流动前沿温度、熔接痕和气穴等,在验证通过后,使用三维设计软件UG进行模具设计。结果 进浇方案2的翘曲变形量较小,为0.61 mm,可作为预选方案。对方案2进行验证可知,产品无缩水情况,填充均匀,熔体流动前沿速度一致,没有出现流痕和虎皮纹现象,熔接痕出现在非外观表面且数量较少,气穴仅出现在产品边缘。待模具冷却系统设计完毕后进行仿真分析,结果表明,凸凹模模温温差小于10 ℃,产品内应力较小,无翘曲变形风险,方案2可作为最终方案。结论 提出的数值仿真与模具设计相结合的方法,准确预测了产品成型质量,为模具设计提供了科学依据,极大提高了开模一次性成功率。
英文摘要:
      The work aims to propose a method combining numerical simulation analysis with mold design to provide scientific basis for the key parameters of the mold, so as to improve the success rate of mold opening. Several pouring schemes were designed based on experience, and then a better scheme was selected as the pre-selected scheme based on the simulation results of the mold flow analysis software Moldflow. The important parameters of the pre-selected scheme, such as shrinkage, filling time, filling contour, flow front temperature, welding marks, and air pockets were verified. After the parameters passed verification, the 3D design software UG was used for mold design. The warping deformation of Scheme 2 was relatively small, at 0.61 mm, so it could be used as a pre-selected scheme. According to the verification of Scheme 2, it was found that the product had no shrinkage, uniform filling, consistent melt flow front velocity and no flow marks or tiger skin marks, and the welding marks appeared on non-appearance surfaces in a small amount, and air pockets only appeared on the edge of the product. After the design of the mold cooling system was completed, simulation analysis was carried out, which indicated that the temperature difference between the convex and concave molds was less than 10 ℃, resulting in low internal stress and no risk of warping and deformation in the product. Therefore, Scheme 2 could be used as the final scheme. This method combining numerical simulation analysis with mold design accurately predicts product forming quality, provides scientific basis for mold design, and greatly improves the one-time success rate of mold opening.
View Full Text   View/Add Comment  Download reader
Close

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

You are the780341visitor    渝ICP备15012534号-4

>Copyright:Journal of Netshape Forming Engineering 2014 All Rights Reserved

>Postal Code: Phone:Fax: Email:

>    

渝公网安备 50010702501719号