文章摘要
单道激光熔覆Inconel 625熔覆层尺寸预测
Prediction of Size for Single Pass Inconel 625 Clads Deposited by Laser Cladding
  
DOI:10.3969/j.issn.1674-6457.2022.09.015
中文关键词: 激光熔覆  神经网络  中心复合设计  Inconel 625  熔覆层尺寸
英文关键词: laser cladding  neural network  central composite design  Inconel 625  cladding layer size
基金项目:重庆市轻合金材料与加工工程技术研究中心开放基金(GCZX202001);陕西省自然科学基础研究计划(2020JQ– 780);国家自然科学基金青年项目(51901180)
Author NameAffiliation
WEI Wen-lan School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China 
WEI Ze-bing School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China 
GUO Long-long School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China
Chongqing Engineering Technology Research Center for Light Alloy and Processing, Chongqing Three Gorges University, Chongqing 404100, China 
LIU Hong-liang Baoji Oilfield Machinery Co., Ltd., Shaanxi Baoji 721002, China 
CAO Jia-chen School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China 
ZHANG Yi-wei Chongqing Engineering Technology Research Center for Light Alloy and Processing, Chongqing Three Gorges University, Chongqing 404100, China 
QU Hao School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China 
Hits: 2018
Download times: 747
中文摘要:
      目的 准确预测激光熔覆Inconel 625熔覆层尺寸。方法 以送粉速率、扫描速度和激光功率为试验变量,以熔覆层的宽度和高度为评价指标,结合中心复合试验设计方法进行试验设计,开展单道激光熔覆试验,探究工艺参数对单道熔覆层尺寸的影响规律,并建立以工艺参数为输入、熔覆层尺寸为输出的BP神经网络模型,利用粒子群算法对BP神经网络模型进行优化,对比分析优化前后模型的预测效果。结果 激光功率对熔覆层宽度的影响最显著,其次是扫描速度,最后是送粉速率;扫描速度对熔覆层高度的影响最显著,其次是激光功率,最后是送粉速率;粒子群算法优化BP神经网络预测模型对熔覆层尺寸的预测精度较高,熔覆层宽度和高度的测量值和预测值之间的平均相对误差分别为4.238%和2.910%。结论 研究成果可以为激光熔覆Inconel 625熔覆层尺寸的调控和预测提供参考。
英文摘要:
      The work aims to accurately predict the size of cladding layer of Inconel 625 laser cladding. With powder feeding rate, scanning speed and laser power as the test variables, and width and height of the cladding layer as the evaluation indicators, combined with the center composite experimental design method, the experimental design was carried out, and the single-channel laser cladding test was carried out, the effect law of process parameters on the size of single cladding layer was explored. The BP neural network model was established with the process parameters as the input and the size of the cladding layer as the output. The particle swarm algorithm was used to optimize the BP neural network, and the prediction effect of the model before and after the optimization was compared and analyzed. The laser power had the most significant effect on the width of the cladding layer, followed by the scanning speed, and finally the powder feeding rate. The scanning speed has the most significant effect on the height of the cladding layer, followed by the laser power and finally the powder feeding rate. The BP neural network prediction model optimized by particle swarm optimization had high prediction accuracy for size of cladding layer. The average relative errors between the measured and predicted widths and heights of cladding layer were 4.238% and 2.910% respectively. The research results can provide reference for size regulation and prediction of cladding layer of Inconel 625 laser cladding.
View Full Text   View/Add Comment  Download reader
Close

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

You are the504647visitor    渝ICP备15012534号-6

>Copyright:Journal of Netshape Forming Engineering 2014 All Rights Reserved

>Postal Code: Phone:Fax: Email:

>    

渝公网安备 50010702501719号