|
超薄铝合金胶粘接及激光焊接工艺研究 |
Adhesive Bonding and Laser Welding of Ultra-Thin Aluminum Alloy |
Received:May 01, 2021 |
DOI:10.3969/j.issn.1674-6457.2022.02.021 |
中文关键词: 铝合金材料 粘胶剂 激光焊接 剪切强度 |
英文关键词: aluminum alloy adhesive laser welding shear strength |
基金项目: |
|
Hits: 1921 |
Download times: 733 |
中文摘要: |
目的 为了解决厚度为0.05 mm的铝合金在激光焊接过程中,材料发生变形导致的焊穿或者虚焊问题。方法 采用在下层铝合金材料表面均匀涂覆粘胶剂,将上下2层铝合金材料进行预固定,然后采用激光焊接,形成焊缝。通过控制涂覆粘胶剂的次数,得到胶层厚度为11.2 µm,对涂覆粘胶剂的铝合金进行激光焊接实验。结果 当激光平均功率为150 W,焊接速度为100 mm/s,离焦量为2 mm时,焊缝剪切强度最大,为124 MPa,达到母材剪切强度的82%。结论 通过粘胶剂预固定后,在激光加热过程中,可以很好地克服材料的变形,让上下材料形成熔池,熔池冷却凝固后熔合在一起形成焊缝,可以解决材料发生变形导致的焊穿或者虚焊问题。 |
英文摘要: |
The work aims to solve the problem of welding penetration or insufficient welding caused by material deformation in laser welding process of aluminum alloy with thickness of 0.05 mm. The adhesive was evenly coated on the surface of the lower aluminum alloy material to prefix the upper and lower aluminum alloy materials and then laser welding was adopted to form welds. By controlling the number of times of adhesive coating, an adhesive coating with a thickness of 11.2 µm was obtained, and the laser welding experiment was carried out to the aluminum alloy coated with adhesive. When average laser power was 150 W, welding speed was 100 mm/s, and defocus amount was 2 mm, the shear strength of welds was the maximum of 124 MPa, reaching to 82% of the base metal shear strength. After pre-fixation by adhesive, the deformation of the material can be well overcome in the process of laser heating, so that the upper and lower materials can form a molten pool, and then the molten pool is cooled and solidified to form welds, which can solve the problem of welding penetration or insufficient welding caused by the deformation of the material. |
View Full Text
View/Add Comment Download reader |
Close |
|
|
|