文章摘要
1060Al/SS304板材铝箔气化焊接界面形成过程数值模拟
Numerical Simulation of the Interfacial Formation of Vaporizing Foil Actuator Welding of 1060 Aluminum Alloy to SS304 Sheet
Received:April 21, 2021  
DOI:10.3969/j.issn.1674-6457.2021.05.012
中文关键词: 金属箔气化焊接  1060Al/SS304  数值模拟  冲击速度  界面形貌
英文关键词: vaporizing foil actuator welding  1060Al/SS304  numerical simulation  impact velocity  interfacial morphology
基金项目:国家自然科学基金(51705081,51774097);航空构件成形与连接重点实验室开放课题(HKGJ-2002)
Author NameAffiliation
FAN Zhi-song School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China 
WANG Qi-cheng School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China 
HUANG Jia-cheng School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China 
LIU Da-hai School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China 
DENG Jiang-hua School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China 
Hits: 2404
Download times: 1066
中文摘要:
      目的 对1060Al/SS304板材铝箔气化焊接过程进行数值模拟,揭示焊接界面的形成与演变规律。方法 基于非线性有限元软件LS-DYNA,建立1060Al/SS304板材铝箔气化焊接过程的光滑粒子流体动力学(SPH)模型,分析冲击速度对焊接界面形貌的影响,对界面形貌进行实验对比分析。结果 研究结果显示1060Al/SS304板材铝箔气化焊接界面包含了3个典型区段,即初始平直区、后继紊乱波形区和终了稳定波形区。当冲击速度达700 m/s、碰撞角度为16°时,波长和振幅分别稳定在260 μm和45 μm,界面波峰处呈现出尾部旋涡状,旋涡区内温度高于1060Al母材熔点。结论 在保持碰撞角度不变的条件下,稳定区界面的波长与振幅均随着冲击速度的增大而增大。平直状结合界面附近形成了一高温层,当冲击速度足够大时,该薄层发生熔化,数值模拟结果与结合界面实验观察结果一致。
英文摘要:
      This work aims to numerically simulate the vaporizing foil actuator welding (VFAW) of 1060 aluminum alloy to SS304 sheet and to reveal the formation and evolution of the welding interface. Based on the nonlinear finite element software LS-DYNA, a smooth particle hydrodynamics (SPH) model was established for the vaporization foil actuator welding of 1060Al/SS304 sheets. The effect of impact velocity on the interfacial morphology was analyzed, and the interfacial morphology was compared by experiments. The results show that the VFAW interface of 1060Al/SS304 sheet contains three typical regions, namely the initial flat zone, the subsequent turbulent wave zone and the final stable wave zone. When the impact velocity reaches 700 m/s and the collision angle is 16°, the wavelength and amplitude are stable at 260 μm and 45 μm, respectively, the wave peak of the interface presents a tail vortex shape, and the temperature in the vortex region is higher than the melting point of the 1060Al base metal. Under the condition of keeping the collision angle constant, the wavelength and amplitude of the interface in the stable zone increase with the increase of the impact velocity. A high temperature layer is formed near the flat bonding interface. When the impact velocity is large enough, the thin layer melts. The numerical simulation results are consistent with the experimental observation results of the bonding interface.
View Full Text   View/Add Comment  Download reader
Close

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

You are the551194visitor    渝ICP备15012534号-6

>Copyright:Journal of Netshape Forming Engineering 2014 All Rights Reserved

>Postal Code: Phone:Fax: Email:

>    

渝公网安备 50010702501719号