|
基于粒子群算法的粉末电磁压制的线圈结构优化 |
Coil Structure Optimization in Electromagnetic Powder Compacting Based on Particle Swarm(PSO)Algorithm |
Received:December 01, 2015 Revised:January 10, 2016 |
DOI:10.3969/j.issn.1674-6457.2016.01.016 |
中文关键词: AZ31镁合金 显微组织 力学性能 |
英文关键词: particle swarm algorithm structure parameters powder compaction electromagnetic forming |
基金项目:国家自然科学基金 (51475345;51205298); 华中科技大学材料成形与模具技术国家重点实验室开放基金课题 (P2015-01) |
|
Hits: 4725 |
Download times: 3660 |
中文摘要: |
目的 为了提高利用电磁压制下粉末的致密性, 需要提高电磁压制过程中的驱动片受到的冲量, 平面螺旋线圈对增大驱动片受到的冲量有着关键的作用。方法 首先建立了电磁压制装置中线圈的有限元模型, 然后通过模拟的数据和目标函数, 运用BP人工神经网络, 建立了线圈结构参数与驱动片受到的冲量之间的近似模型, 再利用最优解集粒子群(PSO)算法, 对线圈结构参数进行了优化, 通过逐步优化得到了一组最优粒子解, 最后运用有限元模拟软件对得到的结果进行了验证。 结果 得到线圈最优结构参数为: 线圈截面尺寸比为2.4, 线圈与驱动片的距离为1.2 mm, 线圈匝间距为 0.7 mm, 线圈与驱动片的面积比为 0.5。结论 研究结果表明, 运用最优解集粒子群(PSO) 算法和有限元方法相结合的新方法, 能够快速、 有效地获得最优参数结构。 |
英文摘要: |
In order to improve the powder density pressed by electromagnetic,electromagnetic impulse of driving sheet need to be improved,planar spiral coil of sheet plays a key role in increasing drive impulse. Firstly,establishing finite element model of suppress electromagnetic coil , then approximate model of coil structure parameters and drive plates is established by the simulated data and objective function of BP artificial neural network , last coil structure parameters were optimized by particle swarm(PSO) algorithm to obtain an optimal set of particles through the progressive optimization solution. In the end using finite element simulation software verified the obtained results. The optimal coil structure parameters is obtained as follows: the coil section size proportion is 2.4, and distance of 1.2 mm of the drive coil,coil turn spacing of 0.7 mm,coil and drive ratio of 0.5.The results show that the combine particle swarm (PSO)algorithm and finite element method can quickly and effectively obtain the optimal structure parameters. |
View Full Text
View/Add Comment Download reader |
Close |