刘大海,刘康,杨亮,等.TC4钛合金热拉伸变形行为及本构模型的建立[J].精密成形工程,2025,17(4):104-112. LIU Dahai,LIU Kang,YANG Liang,et al.Hot Tensile Deformation Behavior and Constitutive Model of TC4 Titanium Alloy[J].Journal of Netshape Forming Engineering,2025,17(4):104-112. |
TC4钛合金热拉伸变形行为及本构模型的建立 |
Hot Tensile Deformation Behavior and Constitutive Model of TC4 Titanium Alloy |
投稿时间:2024-08-30 |
DOI:10.3969/j.issn.1674-6457.2025.04.010 |
中文关键词: TC4钛合金 热拉伸 力学性能 微观组织 本构模型 低应变速率 |
英文关键词: TC4 titanium alloy hot tensile mechanical property microstructure constitutive model low strain rate |
基金项目:国家自然科学基金(52065045);江西省自然科学基金(20242BAB25208) |
|
摘要点击次数: 0 |
全文下载次数: 0 |
中文摘要: |
目的 综合分析变形温度、应变速率和微观组织对薄板TC4钛合金变形行为的影响机理;考虑温度与应变速率的影响,建立适用于宽温度范围、低应变速率(准静态)条件的本构模型。方法 在温度为25~900 ℃、应变速率为0.000 53 s−1和温度为700~900 ℃、应变速率为0.000 23~0.000 80 s−1的条件下,进行0.6 mm TC4钛合金单轴热拉伸试验。通过观察材料热拉伸变形后的微观组织变化情况,研究微观组织对热拉伸性能的影响。基于Hooke定律和Grosman方程建立此合金的本构模型。结果 当温度由25 ℃升高到900 ℃时,屈服点应变由1.21%降低至0.52%。在700~900 ℃和0.000 23~0.000 80 s−1条件下拉伸时,温度对材料的流变应力影响最大。通过分析微观组织形貌可知,原始TC4钛合金板材存在沿轧制方向分布的(a+b)组织。在700 ℃、0.000 26 s−1条件下拉伸时,得到细小均匀的等轴(a+b)组织;当温度上升至900 ℃时,得到较为粗大均匀的等轴(a+b)组织。结论 当TC4钛合金在高温、低应变速率(准静态)条件下变形时,高温软化作用大于形变硬化作用,温度对合金流变应力的影响占主导地位,但应变速率对流变应力也有一定的影响,证明TC4钛合金为温度应变速率敏感型合金。在700 ℃、0.000 26 s−1条件下拉伸时,材料微观组织均匀细小,其综合力学性能相对最好。基于Hooke定律和Grosman方程建立此合金在700~900 ℃和0.000 23~0.000 80 s−1条件下的本构模型,相关性系数R大于0.96,证明该模型能较好地描述TC4钛合金在宽温度范围、低应变速率(准静态)下的高温变形行为。 |
英文摘要: |
The work aims to analyze the effect mechanism of deformation temperature, strain rate and microstructure on the deformation behavior of thin TC4 titanium alloy comprehensively and establish a constitutive model suitable for wide temperature range and low strain rate (quasi-static) by considering the effect of temperature and strain rate. In the experiment, under the conditions of temperature of 25-900 ℃ and strain rate of 0.000 53 s−1 and temperature of 700-900 ℃ and strain rate of 0.000 23-0.000 80 s−1, the uniaxial hot tensile test of 0.6 mm TC4 titanium alloy was carried out. By observing the changes of microstructure of materials after hot tensile deformation, the effect of microstructure on hot tensile properties was studied. Based on Hooke's law and Grosman's equation, the constitutive model of this alloy was established. When the temperature rose from 25 ℃ to 900 ℃, the yield point strain decreased from 1.21% to 0.52%. During the drawing at 700-900 ℃ and 0.000 23- 0.000 80 s−1, the temperature had the greatest effect on the flow stress of the material. By analyzing the microstructure, it was known that the original TC4 titanium alloy plate had (a+b) structure distributed along the rolling direction. At 700 ℃ and 0.000 26 s−1, fine and uniform equiaxed (a+b) microstructure was obtained. When the temperature rose to 900 ℃, a coarse and uniform equiaxed (a+b) structure was obtained. When TC4 titanium alloy is deformed at high temperature and low strain rate (quasi-static), the softening effect at high temperature is greater than the deformation hardening effect, and the effect of temperature on the rheological stress of the alloy is dominant, but the strain rate also has certain effect on the rheological stress, which proves that TC4 titanium alloy is an alloy sensitive to temperature and strain rate. Under the stretching at 700 ℃ and 0.000 26 s−1, the microstructure of the material is uniform and fine, and its comprehensive mechanical properties are relatively best. Based on Hooke's law and Grosman's equation, the constitutive model of this alloy is established at 700-900 ℃ and 0.000 23- 0.000 80 s−1, and the correlation coefficient R is greater than 0.96, which proves that the model can well describe the high temperature deformation behavior of TC4 titanium alloy in a wide temperature range and low strain rate (quasi-static). |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |
|
|
|