黎海兵,路全彬,黄俊兰,等.异种金属焊接结构件多轴动态力学性能测试平台设计[J].精密成形工程,2025,17(3):31-40. LI Haibing,LU Quanbin,HUANG Junlan,et al.Design of a Multi-axis Dynamic Mechanical Performance Testing Platform for Dissimilar Metal Welded Components[J].Journal of Netshape Forming Engineering,2025,17(3):31-40. |
异种金属焊接结构件多轴动态力学性能测试平台设计 |
Design of a Multi-axis Dynamic Mechanical Performance Testing Platform for Dissimilar Metal Welded Components |
投稿时间:2025-01-22 |
DOI:10.3969/j.issn.1674-6457.2025.03.004 |
中文关键词: 异种金属焊接 Delta机器人 液压驱动 改进滑模控制 多轴力学测试 |
英文关键词: welding of dissimilar metals Delta robot hydraulic drive improved sliding mode control multi-axis mechanical testing |
基金项目:国家自然科学基金(52474401);广东省基础与应用基础研究基金(2023A1515140124);河南省科技研发联合基金重点项目(225200810013) |
|
摘要点击次数: 62 |
全文下载次数: 8 |
中文摘要: |
目的 设计并开发一种基于液压驱动与Delta机器人概念的多自由度加载测试平台,用于异种金属焊接结构件力学性能的评估,以解决当前异种金属焊接结构件在多轴动态加载条件下力学性能测试精度不足的问题,进而提升焊接结构件在复杂工况下的力学性能测试能力。方法 提出的测试平台结合了Delta机器人三自由度并联结构的灵活性与液压系统的大载荷能力,能够在多轴动态加载条件下对焊接结构件进行高精度的力学性能测试。平台采用了改进的滑模控制方法,以增强系统对未知参数和动态扰动的鲁棒性。测试平台通过集成LabVIEW系统实现了实时数据采集与控制,具备实时监测和反馈能力。在实验中,采用车辆悬架臂作为测试对象,通过施加不同方向和大小的力来验证平台的性能。结果 该平台能够在多轴动态加载条件下实现高精度的力学性能测试。测试数据表明,平台对加载力的控制误差始终保持在±2%以内,并成功预测了悬架臂的受力分布和变形模式,验证了它在复杂力学环境中的适应性和可靠性。结论 设计的测试平台能够满足异种金属焊接结构件在多自由度加载条件下的力学性能测试需求,为焊接工艺优化和结构设计提供了重要的实验工具和技术支持。 |
英文摘要: |
The work aims to design and develop a multi-degree-of-freedom loading testing platform based on hydraulic drive and the Delta robot concept for the mechanical performance evaluation of dissimilar metal welded structures, to address the issue of insufficient precision in multi-axis dynamic loading conditions during mechanical performance testing of dissimilar metal welds, and enhance the testing capability of welded structures under complex working conditions. The proposed testing platform combined the flexibility of Delta robot's three-degree-of-freedom parallel structure with the high load capacity of a hydraulic system, enabling high-precision mechanical performance testing of welded structures under multi-axis dynamic loading. An improved sliding mode control method was applied to enhance the system robustness against unknown parameters and dynamic disturbances. The platform integrated a LabVIEW system for real-time data acquisition and control, allowing for real-time monitoring and feedback. In the experiments, a vehicle suspension arm was used as the test object, with various forces applied in different directions and magnitudes to validate the performance of the platform. The platform could achieve high-precision mechanical performance testing under multi-axis dynamic loading conditions. The control error of the applied loading forces remained within ±2%, and the platform successfully predicted the force distribution and deformation mode of the suspension arm, confirming its adaptability and reliability in complex mechanical environments. The testing platform designed in this study meets the mechanical performance testing requirements of dissimilar metal welded structures under multi-degree- of-freedom loading conditions, which provides important experimental tools and technical support for welding process optimization and structural design. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |