王杰,韩传龙,王睿泱,等.含铜奥氏体不锈钢低温环境下成形性能及微观组织的研究[J].精密成形工程,2025,17(1):87-96. WANG Jie,HAN Chuanlong,WANG Ruiyang,et al.Forming Properties and Microstructure of Copper-containing Austenitic Stainless Steel under Low Temperature Environment[J].Journal of Netshape Forming Engineering,2025,17(1):87-96. |
含铜奥氏体不锈钢低温环境下成形性能及微观组织的研究 |
Forming Properties and Microstructure of Copper-containing Austenitic Stainless Steel under Low Temperature Environment |
投稿时间:2024-07-25 |
DOI:10.3969/j.issn.1674-6457.2025.01.011 |
中文关键词: 含铜奥氏体不锈钢 杯突 微观组织 力学性能 相变 |
英文关键词: copper-bearing austenitic stainless steel cupping microstructure mechanical properties phase transformation |
基金项目:国家自然科学基金(52475391,52305401);山西电子科技学院人才引进启动基金(2023RKJ023);山西省研究生科研创新项目(2024SJ298) |
|
摘要点击次数: 46 |
全文下载次数: 6 |
中文摘要: |
目的 研究含铜奥氏体不锈钢在室温及低温下的拉伸、成形性能。了解杯突试验背景下,含铜奥氏体不锈钢微观组织演变规律。方法 在室温及液氮环境−140 ℃温度下,对含铜奥氏体不锈钢进行拉伸、埃里克森(Erichsen)杯突试验。结合试验结果、扫描电镜及透射电镜表征,分析了室温及低温环境对含铜奥氏体不锈钢各项性能的影响。结果 含铜奥氏体不锈钢在−140 ℃时的极限抗拉强度提升约49.7%,屈服强度提升约35.5%,延伸率降低约27.3%。在室温下,拉伸断裂方式为韧性断裂。在低温下,拉伸断裂方式转变为脆韧混合断裂。在杯突试验中,突值从室温的12.78 mm增加到−140 ℃低温的13.45 mm,增加了0.67 mm。结论 通过EBSD分析内部微观组织结构可知,在杯突试验过程中,应力的不断集中及应变的变化,促使位错产生滑移、孪晶,并使奥氏体发生马氏体相变。越靠近断裂裂纹区域,应力集中越明显,奥氏体转变为马氏体越明显,马氏体含量越多。孪晶诱导塑性(TWIP)及相变诱导塑性(TRIP)提高了不锈钢的强度和塑性。 |
英文摘要: |
The work aims to study and analyze the tensile and forming properties of copper-containing austenitic stainless steel at room temperature and low temperature, and understand the microstructure evolution of copper-containing austenitic stainless steel under the background of cupping experiments. Tensile and Erichsen cupping experiments were performed on copper-bearing austenitic stainless steel at room temperature and at −140 ℃ in a liquid nitrogen environment. The effects of room temperature and low temperature environments on the properties of copper-containing austenitic stainless steels were analyzed by combining experiments with scanning electron microscopy and transmission electron microscopy characterization. The ultimate tensile strength of copper-containing austenitic stainless steel at −140 ℃ was increased by about 49.7%, the yield strength was increased by about 35.5%, and the elongation was reduced by about 27.3%. The mode of tensile fracture at room temperature was ductile fracture. At low temperature, the tensile fracture mode changed to a mixed brittle-tough fracture. In the cupping experiment, the protrusion value increased by 0.67 mm from 12.78 mm at room temperature to 13.45 mm at −140 ℃. In conclusion, the analysis of its internal microstructure by EBSD shows that the constant concentration of stress and changes in strain during the cupping experiment contribute to the slip of dislocations, the generation of twins and the martensitic phase transformation of austenite. The closer to the fracture crack region, the more obvious the stress concentration, the more obvious the transformation of austenite to martensite, and the more contents of martensite. Twinning-induced plasticity (TWIP) and phase transition-induced plasticity (TRIP) improve the strength and plasticity of stainless steel. The above provides a certain theoretical basis for solving the processing and preparation of copper-containing austenitic stainless steel in actual production. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |