文章摘要
李娅娜,解飞飞,张生芳.基于CEL方法的6005A铝合金搅拌摩擦焊数值模拟研究[J].精密成形工程,2025,17(1):1-8.
LI Ya'na,XIE Feifei,ZHANG Shengfang.Numerical Simulation of 6005A Aluminum Alloy Friction Stir Welding Based on CEL Method[J].Journal of Netshape Forming Engineering,2025,17(1):1-8.
基于CEL方法的6005A铝合金搅拌摩擦焊数值模拟研究
Numerical Simulation of 6005A Aluminum Alloy Friction Stir Welding Based on CEL Method
投稿时间:2024-06-18  
DOI:10.3969/j.issn.1674-6457.2025.01.001
中文关键词: 搅拌摩擦焊  6005A铝合金  CEL方法  温度场  残余应力
英文关键词: friction stir welding  6005A aluminum alloy  CEL method  temperature field  residual stresses
基金项目:国家自然科学基金(52075066);辽宁省教育厅项目(LJKZ0497)
作者单位
李娅娜 大连交通大学 中车学院辽宁 大连 116028 
解飞飞 大连交通大学 机车车辆工程学院辽宁 大连 116028 
张生芳 大连交通大学 机械工程学院辽宁 大连 116028 
摘要点击次数: 101
全文下载次数: 18
中文摘要:
      目的 研究6005A铝合金搅拌摩擦焊接全过程温度场及焊后残余应力的分布规律。方法 基于耦合的欧拉-拉格朗日(CEL)方法,应用Johnson-Cook本构模型,并采用质量缩放技术,建立搅拌摩擦焊热力耦合仿真模型,模拟分析6005A铝合金搅拌摩擦焊不同阶段的温度场变化和焊后应力分布情况。通过红外热像仪温度场试验、X射线应力场试验和宏观形貌试验,对数值模型进行验证。结果 在下压与预热停留阶段,温度快速升高至545 ℃,且呈对称分布;在焊接阶段,焊缝区域最高温度为546 ℃,出现在返回侧,返回侧温度略高于前进侧温度,呈不对称分布。焊后残余应力集中在焊缝中心两侧40 mm范围内,垂直于焊缝方向的横向/纵向残余应力分布曲线呈“M”形;残余应力在焊缝两侧呈不对称分布,表现为返回侧残余应力高于前进侧残余应力,其中最大纵向残余应力为−174 MPa,最大横向残余应力为206 MPa,应力最大点均出现在返回侧。待测点实测温度与模拟温度误差不超过5%;待测点实测残余应力与仿真值吻合较好,横/纵向残余应力误差分别为16.3%、16.45%;模拟焊缝与实际焊缝宏观形貌吻合较好。结论 在搅拌摩擦焊过程中,材料流动不充分使返回侧温度略高于前进侧温度,而焊接过程中不均匀的热分布导致焊后残余应力也呈返回侧数值略高于前进侧数值的不对称分布;通过将试验和模拟得出的温度场、应力场、宏观形貌进行对比分析,可知试验与仿真误差较小,数值模型能够反映真实的焊接过程,从而验证了6005A铝合金CEL数值模型的正确性。
英文摘要:
      The work aims to study the distribution law of temperature field and post-weld residual stress in the whole process of 6005A aluminum alloy stir friction welding. Based on the coupled Euler-Lagrange (CEL) method, Johnson-Cook eigenstructure model and mass scaling technology was used to establish a thermal coupling simulation model to simulate and analyze the temperature field changes and post-weld stress distribution in different stages of 6005A aluminum alloy stir friction welding. The numerical model was validated by an infrared thermography temperature field test, an X-ray stress field test and a macro morphology test. During the downward pressure and preheating dwell stage, the temperature rose rapidly to 545 ℃ and was symmetrically distributed. The highest temperature in the weld area during the welding stage was 546 ℃, which occurred on the return side, and the temperature of the return side was slightly higher than that of the forward side, with an asymmetric distribution. The post-weld residual stress was concentrated in the weld center on both sides of the 40 mm range. That perpendicular to the weld direction of the transverse/longitudinal residual stress distribution curve was in a "M" shape; The residual stress in the weld on both sides of the asymmetric distribution, the performance of the return side of the side was higher than the forward side, which the maximum longitudinal residual stress of −174 MPa, the maximum transverse residual stress of 206 MPa, the maximum stress points all appeared in the return side. The error between the measured and simulated temperatures at the point measured did not exceed 5%. The measured residual stresses at the point to be measured matched well with the simulated values, and the errors of the transverse/longitudinal residual stresses were 16.3% and 16.45%, respectively. And the simulated weld and the actual weld macroscopic morphology were in good agreement. During the process of friction stir welding, the temperature of the return side is slightly higher than that of the forward side due to the insufficient material flow, and the asymmetric distribution of post-weld residual stresses, which is slightly higher than that of the forward side due to the inhomogeneous heat distribution in the process of welding, is also presented. Through the comparative analysis of the temperature field, stress field, and macroscopic morphology between the experimental and simulated ones, the experimental and simulated errors are relatively small, and the numerical model can reflect the real welding process, thus verifying the good agreement of the 6005A aluminum alloy weld with the actual weld. Thus, the correctness of the numerical model of 6005A aluminum alloy CEL is verified.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第14169342位访问者    渝ICP备15012534号-6

>版权所有:《精密成形工程》编辑部 2014 All Rights Reserved

>邮编:400039 电话:023-68679125传真:02368792396 Email: jmcxgc@163.com

>    

渝公网安备 50010702501719号