文章摘要
王妙,刘富初,王毅,等.基于响应面法的微挤出3D打印氧化硅多孔陶瓷工艺参数优化[J].精密成形工程,2024,16(12):68-81.
WANG Miao,LIU Fuchu,WANG Yi,et al.Optimization of Process Parameters for Micro-extrusion 3D Printing of Silica Porous Ceramics Based on Response Surface Methodology[J].Journal of Netshape Forming Engineering,2024,16(12):68-81.
基于响应面法的微挤出3D打印氧化硅多孔陶瓷工艺参数优化
Optimization of Process Parameters for Micro-extrusion 3D Printing of Silica Porous Ceramics Based on Response Surface Methodology
投稿时间:2024-09-29  
DOI:10.3969/j.issn.1674-6457.2024.12.005
中文关键词: 氧化硅多孔陶瓷  微挤出3D打印  响应面法  侧表面粗糙度  抗弯强度  气孔率
英文关键词: silica porous ceramics  micro-extrusion 3D printing  response surface methodology  side surface roughness  flexural strength  porosity
基金项目:广东省基础与应用基础研究基金自然科学基金面上项目(2024A1515013258);国家自然科学基金(52375395);2023年度湖北省农业农村领域科技计划(2023BBB096);深圳市基础研究重点项目(JCYJ20220818102601004);中国地质大学(武汉)教学实验室开放基金(SKJ2023125,SKJ2024121);中国地质大学(武汉)中央高校基本科研业务费资助项目(2024XLB25,2024XLB26);国家级大学生创新创业训练计划(202410491047,202410491048,202410491058,S202410491017,S202410491102,X202410491055)
作者单位
王妙 中国地质大学武汉 机械与电子信息学院武汉 430074
中国地质大学 深圳研究院广东 深圳 518057 
刘富初 中国地质大学武汉 机械与电子信息学院武汉 430074
中国地质大学 深圳研究院广东 深圳 518057 
王毅 中国地质大学武汉 机械与电子信息学院武汉 430074
中国地质大学 深圳研究院广东 深圳 518057 
赵彦鹤 中国地质大学武汉 机械与电子信息学院武汉 430074 
张亮 布里斯托大学 电气电子机械工程学院布里斯托尔 BS8 1QU英国 
刘浩 中国地质大学武汉 机械与电子信息学院武汉 430074
中国地质大学 深圳研究院广东 深圳 518057 
徐凯 中国地质大学武汉 机械与电子信息学院武汉 430074
中国地质大学 深圳研究院广东 深圳 518057 
程鹏 中国地质大学武汉 机械与电子信息学院武汉 430074
中国地质大学 深圳研究院广东 深圳 518057 
韩光超 中国地质大学武汉 机械与电子信息学院武汉 430074
中国地质大学 深圳研究院广东 深圳 518057 
摘要点击次数: 131
全文下载次数: 23
中文摘要:
      目的 探明微挤出3D打印氧化硅多孔陶瓷性能与工艺参数的影响规律,获得较优的3D打印工艺参数,优化氧化硅多孔陶瓷侧表面粗糙度、强度和气孔率。方法 采用微挤出3D打印技术制备氧化硅多孔陶瓷,基于响应面法方法,以针头内径、层高/针头内径比值和打印速度为自变量,分析不同工艺参数对陶瓷侧表面粗糙度、抗弯强度和气孔率的影响。结果 针头内径和层高/针头内径比值的交互作用对侧表面粗糙度影响最大,针头内径和打印速度的交互作用对抗弯强度和气孔率影响最为显著。确定了最优工艺参数方案,即针头内径为0.41 mm、层高/针头内径比值为48%和打印速度为610 mm/min,此时氧化硅多孔陶瓷具有优异的综合性能,即侧表面粗糙度为21.24 μm±0.98 μm、抗弯强度为7.38 MPa±0.31 MPa、气孔率为52.21%± 1.07%。结论 建立了氧化硅多孔陶瓷侧表面粗糙度、抗弯强度和气孔率与针头内径、层高/针头内径比值、打印速度的二阶非线性回归数学模型,实现了侧表面粗糙度、抗弯强度与气孔率的协同优化,为微挤出3D打印技术在多孔陶瓷领域的推广应用提供了理论依据和实践参考。
英文摘要:
      The work aims to investigate the effect of process parameters on the performance of micro-extrusion 3D printed silica porous ceramics, obtain optimal 3D printing parameters, and optimize the surface roughness, strength, and porosity of silica porous ceramics. Silica porous ceramics was fabricated by micro-extrusion 3D printing technology. Based on response surface methodology, needle inner diameter, layer height/needle inner diameter ratio, and printing speed were analyzed as independent variables to assess their effects on the surface roughness, flexural strength, and porosity of the 3D printed ceramics. The results indicated that the interaction between needle inner diameter and layer height/needle inner diameter ratio had the greatest effect on surface roughness, while the interaction between needle inner diameter and printing speed significantly affected flexural strength and porosity. The optimal process parameters were obtained, possessing a needle inner diameter of 0.41 mm, a layer height/needle inner diameter ratio of 48%, and a printing speed of 610 mm/min, the corresponding silica porous ceramics exhibited excellent overall performance, presenting a surface roughness of 21.24 μm±0.98 μm, a flexural strength of 7.38 MPa± 0.31 MPa, and a porosity of 52.21%±1.07%. In conclusion, a second-order nonlinear regression mathematical model is established to correlate the surface roughness, flexural strength, and porosity of silica porous ceramics with the needle inner diameter, layer height/needle inner diameter ratio, and printing speed. This allows for the coordinated optimization of surface roughness, flexural strength, and porosity, providing a theoretical basis and practical reference for the promotion and application of micro-extrusion 3D printing technology in the field of porous ceramics.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第14169919位访问者    渝ICP备15012534号-6

>版权所有:《精密成形工程》编辑部 2014 All Rights Reserved

>邮编:400039 电话:023-68679125传真:02368792396 Email: jmcxgc@163.com

>    

渝公网安备 50010702501719号