文章摘要
李艳英,李旻萱,欧阳斌,等.Ti-55531钛合金室温强-塑-韧匹配化热处理工艺研究[J].精密成形工程,2023,15(12):68-78.
LI Yan-ying,LI Min-xuan,OUYANG Bin,et al.Investigation into the Heat Treatment Technology to Enhance the Compatibility among the Tensile Strength, Ductility, and Fracture Toughness of Ti-55531 Alloy[J].Journal of Netshape Forming Engineering,2023,15(12):68-78.
Ti-55531钛合金室温强-塑-韧匹配化热处理工艺研究
Investigation into the Heat Treatment Technology to Enhance the Compatibility among the Tensile Strength, Ductility, and Fracture Toughness of Ti-55531 Alloy
投稿时间:2023-10-25  
DOI:10.3969/j.issn.1674-6457.2023.12.009
中文关键词: 钛合金  固溶处理  微观组织  力学性能  断裂韧度
英文关键词: titanium alloy  solid-solution treatment  microstructure  mechanical properties  fracture toughness
基金项目:山东省军民融合项目(2020****0501)
作者单位
李艳英 贵州安大航空锻造有限责任公司贵州 安顺 561005 
李旻萱 哈尔滨工业大学威海 材料科学与工程学院山东 威海 264209 
欧阳斌 贵州安大航空锻造有限责任公司贵州 安顺 561005 
葛金峰 贵州安大航空锻造有限责任公司贵州 安顺 561005 
刘成 贵州安大航空锻造有限责任公司贵州 安顺 561005 
常旭升 哈尔滨工业大学威海 材料科学与工程学院山东 威海 264209 
綦育仕 贵州安大航空锻造有限责任公司贵州 安顺 561005
哈尔滨工业大学威海 材料科学与工程学院山东 威海 264209 
张宇 哈尔滨工业大学威海 材料科学与工程学院山东 威海 264209 
陈刚 哈尔滨工业大学威海 材料科学与工程学院山东 威海 264209 
摘要点击次数: 1134
全文下载次数: 517
中文摘要:
      目的 采用Ti-5Al-5Mo-5V-3Cr-1Zr(Ti-55531)钛合金,研究了不同热处理工艺条件下室温强-塑-韧性能的匹配关系,为满足不同强度、断裂延伸率、断裂韧度综合服役性能要求提供热处理工艺参考。方法 在单相区固溶+时效、双相区固溶+时效2种制度下进行了热处理试验,分析了不同单相区固溶冷却方式(空冷、炉冷)和时效温度、双相区固溶温度等条件下的室温拉伸性能(抗拉强度σb、断裂延伸率A)和断裂韧度KIC,揭示了Ti-55531钛合金室温强度、塑性、断裂韧度的匹配关系。结果 经单相区固溶+空冷+时效处理得到了细片层状次生αs相,随时效温度的升高,αs相尺寸增大,抗拉强度降低,延伸率和断裂韧度升高;经单相区固溶+炉冷+时效处理得到了较粗的α片层,随时效温度从500 ℃升高至600 ℃,α片层尺寸增大,抗拉强度降低,延伸率和断裂韧度升高,但呈现出较高的脆性;随着双相区固溶温度的升高,初生αp相尺寸显著降低,促进后续时效处理过程中析出了更细小的次生αs相,提高了强度,降低了延伸率和断裂韧度。结论 得到了2种能够实现良好强-塑-韧性能匹配的热处理工艺路线:1)850 ℃/1 h固溶后炉冷至600 ℃保温8 h,可得到片层组织以及较高的断裂韧度(KIC=110.01 MPa.m1/2)、良好的强度(σb=1 111 MPa)和断裂延伸率(A=9.69%);2)810 ℃固溶+空冷+600 ℃/3 h时效,可得到初生αp+次生αs相的双态组织,实现了高强度(σb=1 287 MPa)和高断裂延伸率(A=12.76%),同时断裂韧度达到60.4 MPa.m1/2
英文摘要:
      The work aims to take Ti-5Al-5Mo-5V-3Cr-1Zr (Ti-55531) alloy as the object to study the compatibility among the tensile strength, ductility and fracture toughness at room temperature under different heat treatment conditions, so as to provide a reference for heat treatment process to meet the comprehensive service performance requirements of different strength, elongation at break and fracture toughness. Heat treatment experiments were carried out in two systems:β solid-solution + aging and α+β solid-solution + aging. Tensile properties (including the ultimate tensile strength σb, fracture elongation A) and fracture toughness KIC under the conditions of different β solid-solution cooling modes (air cooling and furnace cooling), aging temperature and α+β solid-solution temperature, etc. were analyzed and the compatibility among the tensile strength, ductility and fracture toughness of Ti-55531 alloy at room temperature was revealed. Β solid-solution followed by air cooling and aging treatment resulted in the formation of fine secondary α lamellar (αs). The αs size increased with the elevation in aging temperature, causing the deterioration in σb and improvement in A and KIC. The β solid-solution followed by furnace cooling and aging treatment produced coarser α lamellar. Elevations in aging temperature from 500 ℃ to 600 ℃ resulted in the rising of α lamellar size and associated decrement in σb and increment in A and KIC. However, these microstructures exhibited high brittleness (A<3%). Increasing the α+β solid-solution temperature reduced the size of primary α particles (αp), thus promoting the precipitation of finer αs during subsequent aging treatment and also resulting in the enhancement in σb and decrement in KIC and A. 2 heat treatment processes that can achieve good compatibility among the tensile strength, ductility and fracture toughness are obtained:1) After a solution treatment of 850 ℃/1 h followed by furnace cooling to 600 ℃ and isothermally holding for 8 h, high KIC=110.01 MPa.m1/2 and moderate σb and A are obtained (σb=1 111 MPa, A=9.69%). 2) After a solid solution treatment under 810 ℃ for 1 h followed by air cooling and aging treatment under 600 ℃ for 3 h, binary structure of primary αp+ secondary αs phases can be obtained and higher compatibility of σband A (σb=1 287 MPa, A=12.76%) is obtained. Meanwhile, the fracture toughness is moderate (KIC=60.4 MPa.m1/2), as remarkably lower than that for the lamellar microstructure.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第14003519位访问者    渝ICP备15012534号-6

>版权所有:《精密成形工程》编辑部 2014 All Rights Reserved

>邮编:400039 电话:023-68679125传真:02368792396 Email: jmcxgc@163.com

>    

渝公网安备 50010702501719号