文章摘要
毕家伟,李忠华,张琪飞,等.基于CMT+P工艺的5356铝合金微观组织与力学性能[J].精密成形工程,2023,15(8):36-44.
BI Jia-wei,LI Zhong-hua,ZHANG Qi-fei,et al.Microstructure and Mechanical Properties of 5356 Aluminum Alloy Based on CMT+P Process[J].Journal of Netshape Forming Engineering,2023,15(8):36-44.
基于CMT+P工艺的5356铝合金微观组织与力学性能
Microstructure and Mechanical Properties of 5356 Aluminum Alloy Based on CMT+P Process
投稿时间:2023-05-04  
DOI:10.3969/j.issn.1674-6457.2023.08.005
中文关键词: 5356铝合金  电弧增材制造  冷金属过渡加脉冲  微观组织  力学性能
英文关键词: 5356 aluminum alloy  wire arc additive manufacture  cold metal transition plus pulse  microstructure  mechanical property
基金项目:国家自然科学基金面上项目(52075502,52275278);山西省科技重大专项计划“揭榜挂帅”项目(202201150401019);山西省研究生教育创新项目(2022Y605);中北大学第18届研究生科技立项(20221814)
作者单位
毕家伟 中北大学 机械工程学院太原 030051 
李忠华 中北大学 机械工程学院太原 030051 
张琪飞 中北大学 机械工程学院太原 030051 
霍文娟 晋西工业集团有限责任公司太原 030051 
张茂荣 中北大学 机械工程学院太原 030051 
摘要点击次数: 1090
全文下载次数: 727
中文摘要:
      目的 研究5356铝合金在冷金属过渡+脉冲(CMT+P)工艺下不同区域的微观组织与力学性能,并分析不同区域的强塑性变化规律,探索微观组织对力学性能的影响,为提高CMT+P工艺下5356铝合金的力学性能提供新思路。方法 利用CMT+P工艺在6061铝合金基板上成形5356铝合金试样,通过万能实验机、维氏硬度计、X射线衍射仪、金相显微镜和扫描电子显微镜分析不同区域试样的拉伸性能、维氏硬度、物相分布、微观组织、断口形貌及第二相分布情况。结果 堆焊试样沉积层宽度从底部区域到顶部区域逐渐增大,底部区域、中间区域、顶部区域的沉积层宽度依次为1.9、2.3、3 mm。顶部区域由等轴晶组成;中间区域由等轴晶和少量柱状晶组成;底部区域由柱状晶和细小等轴晶组成。平均晶粒尺寸从底部区域到顶部区域逐渐增大,底部区域、中间区域、顶部区域的平均晶粒尺寸依次为57、76、123 µm。不同区域的试样均由α-Al基体和β(Al3Mg2)相组成,与顶部区域和中间区域相比,底部区域析出相的数量更多且弥散更加均匀。堆焊试样顶部、中间、底部区域的强塑性高于垂直方向的强塑性,而底部区域的强塑性高于中间和顶部区域的强塑性,水平方向与垂直方向均为韧性断裂。底部区域的显微硬度最高(约95HV),顶部区域和中间区域的硬度值稳定在89HV左右。结论 CMT+P电弧增材制造过程中的热积累效应是造成不同区域沉积层宽度和显微组织变化的重要原因。与顶部区域和中间区域相比,底部区域的晶粒尺寸最小,析出相数量最多并且弥散均匀。在细晶强化和析出相强化的作用下,底部区域的力学性能高于其他2个区域的。
英文摘要:
      The work aims to investigate the microstructure and mechanical properties of 5356 aluminum alloy in various regions under cold metal transition plus pulse (CMT+P) process, to analyze the change law of strength and plasticity in various regions, explore the impact of microstructure on mechanical properties, and propose a novel approach for enhancing the mechanical properties of 5356 aluminum alloy in CMT+P process. The CMT+P technique was used to manufacture the 5356 aluminum alloy specimens on the 6061 aluminum alloy substrate. The tensile properties, Vickers hardness, phase distribution, microstructure, fracture morphology and second phase distribution of specimens in various regions were examined by a universal testing machine, a Vickers hardness tester, an X-ray diffractometer, a metallographic microscope and a scanning electron microscope. The experimental results showed that the width of deposited layer of surfacing specimens steadily rose from the bottom area to the top area, with the deposited layer width of 1.9, 2.3 and 3 mm sequentially. The top region was made up of equiaxed crystals; the middle region was made up of equiaxed crystals and a few columnar crystals; and the bottom region was made up of columnar crystals and fine equiaxed crystals. The average grain size increased progressively from the bottom region to the top region with the average grain size of 57, 76, and 123 µm sequentially. The specimens in various regions consisted of α-Al matrix and β (Al3Mg2) phase, and the precipitated phase in the bottom region was more evenly distributed and more abundant compared to the other two regions. The strength and the plasticity in the top, middle and bottom regions of surfacing specimens were higher than those in the vertical direction, while the strength and the plasticity in the bottom region were higher than those in the middle and top regions. The horizontal and vertical directions were ductile fractures. The microhardness value of the bottom region was the highest (~95HV), and stable at around 89HV in the top and the middle region. The heat accumulation effect in the CMT+P arc additive manufacturing process is an important cause of the variation in the width of the deposited layers and microstructure in different regions. Compared to the other two regions, the bottom region has the smallest grain size, a larger number of precipitated phases and a more uniform dispersion. The mechanical properties of the bottom region are higher than those of the other two regions under the effect of fine crystal strengthening and precipitated phase strengthening.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第14129867位访问者    渝ICP备15012534号-6

>版权所有:《精密成形工程》编辑部 2014 All Rights Reserved

>邮编:400039 电话:023-68679125传真:02368792396 Email: jmcxgc@163.com

>    

渝公网安备 50010702501719号