文章摘要
章顺虎,车立志,田文皓,等.基于卷积神经网络的热轧薄板力学性能建模[J].精密成形工程,2022,14(3):1-7.
ZHANG Shun-hu,CHE Li-zhi,TIAN Wen-hao,et al.Modeling of Mechanical Properties of Hot Rolled Sheet Based on Convolutional Neural Network[J].Journal of Netshape Forming Engineering,2022,14(3):1-7.
基于卷积神经网络的热轧薄板力学性能建模
Modeling of Mechanical Properties of Hot Rolled Sheet Based on Convolutional Neural Network
投稿时间:2021-10-11  
DOI:10.3969/j.issn.1674-6457.2022.03.001
中文关键词: 热轧  薄板  卷积神经网络  大数据  力学性能
英文关键词: hot rolling  sheet  convolutional neural network  big data  mechanical property
基金项目:国家自然科学基金(52074187,U1960105)
作者单位
章顺虎 苏州大学 沙钢钢铁学院江苏 苏州 215021 
车立志 苏州大学 沙钢钢铁学院江苏 苏州 215021 
田文皓 苏州大学 沙钢钢铁学院江苏 苏州 215021 
李言 苏州大学 沙钢钢铁学院江苏 苏州 215021 
摘要点击次数: 1884
全文下载次数: 718
中文摘要:
      目的 为了提高热轧薄板力学性能的预测精度,采用大数据与卷积神经网络相结合的方式建立高精度的预测模型。方法 建模前,对工业大数据进行预处理,包括去除异常值、聚类、均衡数据以及归一化,以得到高质量的数据集。同时,采用贡献权重法对输入参数进行筛选,去除弱相关的变量以降低模型的复杂程度。在此基础上,采用LeNet-5结构建立卷积神经网络并优化模型的超参数。结果 最终建立了热轧薄板力学性能预测模型,该模型对屈服强度的预测误差基本保持在−7%~8.5%,对抗拉强度的预测误差基本保持在−5%~6%,表现出较高的预测精度。结论 将卷积神经网络模型与传统的BP神经网络模型进行了预测对比,发现卷积神经网络能够利用其局部连接的优势给出更高的预测精度。
英文摘要:
      The work aims to combine big data with convolutional neural network to establish a high-precision prediction model to improve the prediction accuracy of mechanical properties of hot rolled sheet. Before modeling, industrial big data was preprocessed, including outlier removal, clustering, data equalization and normalization, to obtain high-quality data sets. At the same time, the contribution weight method was used to filter the input parameters and remove the weakly correlated variables to reduce the complexity of the model. On this basis, the convolutional neural network was established with LeNet-5 structure and the hyperparameters of the model were optimized. At last, a prediction model for mechanical properties of hot rolled sheet was finally established. The prediction error of the model for yield strength was maintained between −7%~8.5%, and the prediction error of tensile strength was maintained between −5%~6%. The prediction results showed high prediction accuracy. In addition, the comparison of the results of convolutional neural network and traditional back propagation neural network finds that the convolutional neural network can give higher prediction accuracy by taking advantage of its local connection.
查看全文   查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第14000788位访问者    渝ICP备15012534号-6

>版权所有:《精密成形工程》编辑部 2014 All Rights Reserved

>邮编:400039 电话:023-68679125传真:02368792396 Email: jmcxgc@163.com

>    

渝公网安备 50010702501719号